DIMENSI METRIK PADA GRAF HASIL KALI SISIR PADA GRAF LINTASAN TERHADAP BEBERAPA GRAF REGULER

Authors

  • Widya Aprilia Padoma Universitas Pasifik Morotai
  • Anuwar Kadir Abdul Gafur Universitas Pasifik Morotai

DOI:

https://doi.org/10.55098/amalgamasi.v4.i1.pp16-29

Keywords:

metric dimension, resolving set, regular graph, path graph, the comb product graph

Abstract

Let  be a graphs finite, simple, and connected. A set of vertices  subset of . For , a representation of  with respect to  is defined as -tuple . The set  is a resolving set of  if ever two distinct vertices  satisfy  A basis of  is a resolving set of  with minimum cardinality, and the metric dimension of  refers to its cardinality, denoted by . In this research, Suhadi W Saputro et al have found the metric dimension of the comb product graph  if  leaf or  jika not a leaf. Therefore, we will be looking for the metric dimension of the product of a comb on a path graph to some regular graph and we have managed to find if the copy vertices of . For , let  is a path end  is -regular or  is -regular.  Then for  or  for

Downloads

Published

2025-05-30

How to Cite

Padoma, W. A., & Gafur, A. K. A. (2025). DIMENSI METRIK PADA GRAF HASIL KALI SISIR PADA GRAF LINTASAN TERHADAP BEBERAPA GRAF REGULER. Amalgamasi: Journal of Mathematics and Applications, 4(1), 16–29. https://doi.org/10.55098/amalgamasi.v4.i1.pp16-29